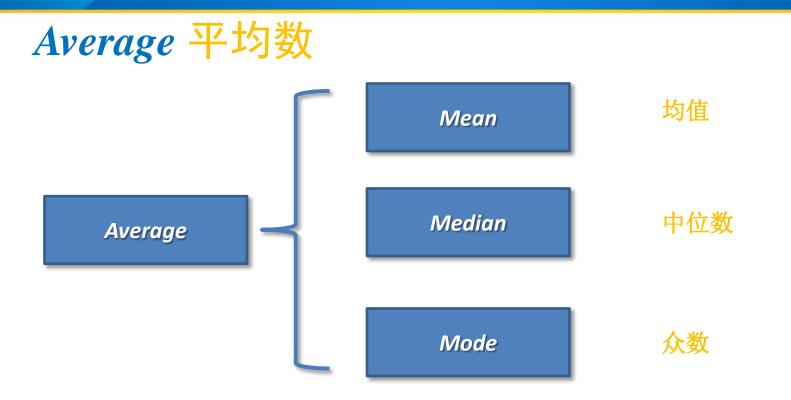
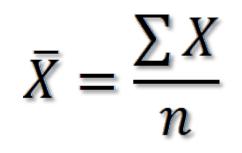


New Media Data Analytics and Application

Lecture 9: Basic Statistics for Natural Language Processing Ting Wang


- The Foundation of Statistics
- Bayes' Theorem
- Markov Model
- N-gram
- Chinese Word Segmentation



introduce some basic statistical metrics to you The Foundation of Statistics

Mean 均值 Supposing: $X=(x_1, x_2, \dots, x_n)$

Median 中位数

1, 3, 3, **6**, 7, 8, 9

the value separating the higher half of a data sample, a population, or a probability distribution, from the lower half.

Supposing: $X=(x_1, x_2, \ldots, x_n)$

Median = <u>6</u> 1, 2, 3, **4**, **5**, 6, 8, 9 Median = (4 + 5) ÷ 2 = **4.5**

- Sort *X* from small number to large number,
- -if *n* is an odd number, then the Median of *X* is the middle one,
- -if *n* is an even number, then the Median of *X* is the **mean** of the two middle numbers.

Mode 众数

the value that appears most often in a set of data

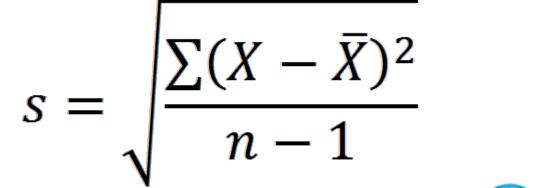
Comparison of common averages of values { 1, 2, 2, 3, 4, 7, 9 }

Туре	Description	Example	Result
Arithmetic mean	Sum of values of a data set divided by number of values: $ar{x} = rac{1}{n} \sum_{i=1}^n x_i$	(1+2+2+3+4+7+9) / 7	4
Median	Middle value separating the greater and lesser halves of a data set	1, 2, 2, 3 , 4, 7, 9	3
Mode	Most frequent value in a data set	1, 2 , 2 , 3, 4, 7, 9	2

Range 极差

the difference between the largest and smallest values

r = Max - Min


Variance 方差

the expectation of the squared deviation of a random variable from its mean, informally measures how far a set of (random) numbers are spread out from their mean, always known as D(X), Var(X)

$$s^{2} = \frac{\sum (X - \overline{X})^{2}}{n - 1}$$
Why n-1?

Standard Deviation 标准差

 $x_i P_i$

Expected Value 数学期望

Where: P_i is the weight of x_i in Statistics, P is the probability.

 $E[X] = \overline{X} =$

Properties of Expected Value

- If C is a constant, E[C]=C
- If *X* and *Y* are random variables such that $X \le Y$, then $E[X] \le E[Y]$
- -E[X+C]=E[X]+C
- -E[X+Y]=E[X]+E[Y]
- -E[CX]=CE[X]

 $-D[X] = E[X^2] - (E[X])^2$

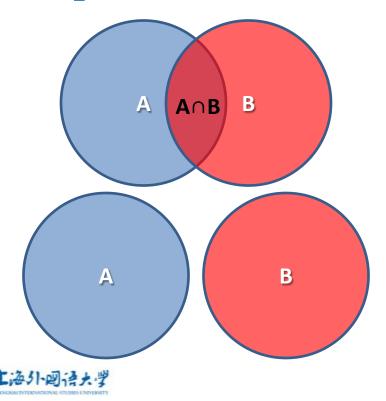
very useful for natural language processing **Bayes' Theorem**

Bayes' Theorem

 $P(x_i) = 1/6$ Sample Space: $\{1, 2, 3, 4, 5, 6\}$ $P(x_i) = 1/2$

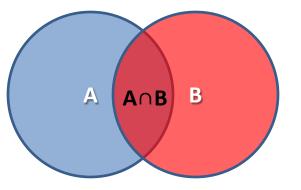
{H, T}

Bayes' Theorem


Properties of Probability $P(x_i) \geq 0$ $P(x_i) \in [0,1]$ n $P(x_i) = 1$

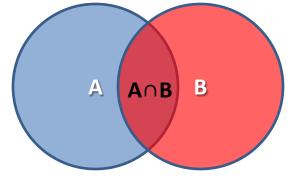
Independence 独立性

Dependent


Independent

Bayes' Theorem

Conditional Probability 条件概率


P(A | B), is the probability of observing event A given that B is true

$$P(A|B) = P(A \cap B)/P(B)$$

$P(A|B) = P(A \cap B)/P(B)$ $P(A \cap B) = P(A|B)P(B)$ $P(A \cap B) = P(B|A)P(A)$ P(A|B)P(B) = P(B|A)P(A)P(B|A)P(A)P(A|B) =

Bayes' Theorem 贝叶斯定理

Bayes' Theorem

Bayes' Theorem

Bayes' Theorem plays an very important role in statistical NLP.

- We can predict what you will say!
 - Uncle Sam: How are you?
 - Chinese student: Fine, Thank you, and you?
 - Chinese student's Predictive Answer: I am fine, too!
 - Uncle Sam: Nothing much.
 - Chinese student:。。。(不多??)

Bayes' Theorem

Because, for Chinese students:
P(Fine, Thank you, and you? | How are you?)
P(I am fine, too! | Fine, Thank you, and you?)
P(Nothing much | Fine, Thank you, and you?)

In the corpus of Chinese students,

P(I am fine, too! | Fine, Thank you, and you?)>P(Nothing much | Fine, Thank you, and you?)

Another Example:

I ate a red _____.

A. telephone B. light C. swim D. tomato

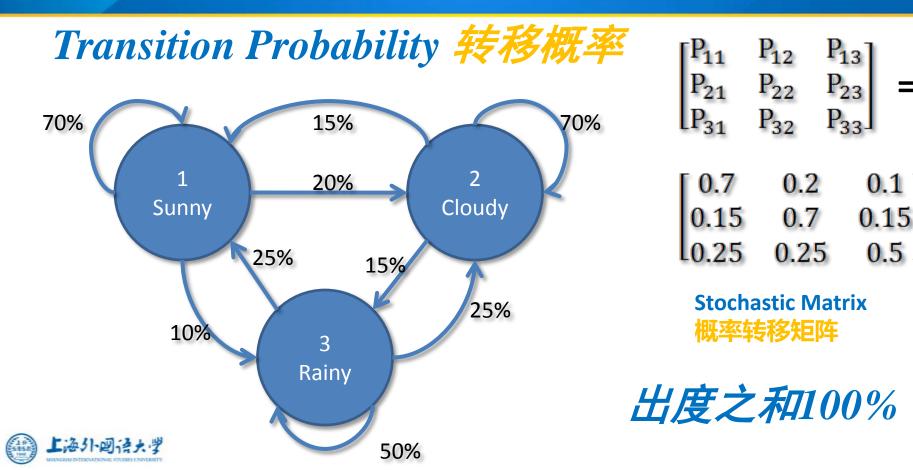
Bayes' Theorem

No Grammar! But the Frequency of use!

- The most successful Chinglish: *Long time no see!*
- Chinglish Future Star: Good Good Study, Day Day UP!

your future is decided by now, not the past Markov Model

Stochastic Process 随机过程 Markov Chain 马尔科夫链


 $X = (x_1, x_2, \dots, x_n)$

x_i is a Stochastic Process

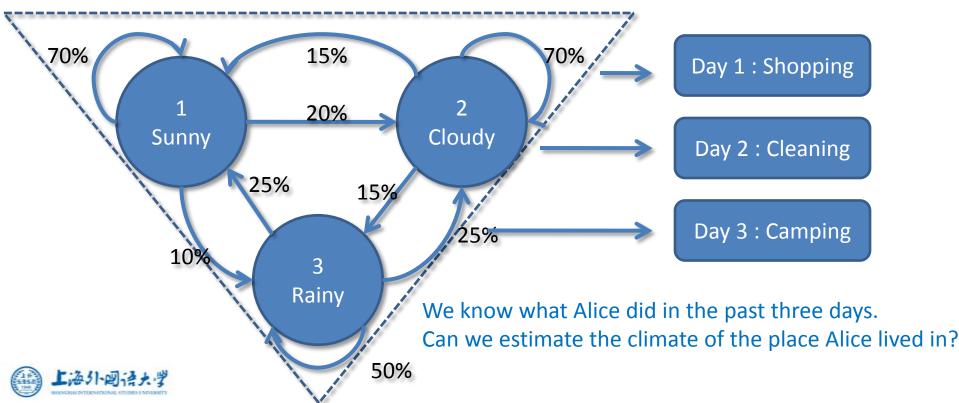
1,3,5,2,1,4,2,6,3,.....

X is a Markov Chain

Markov Model 马尔科夫模型

$$P(x_{t+1}|x_1, x_2, \cdots, x_t) = P(x_{t+1}|x_t)$$

First-Order Markov Model


Your future is not decided by your past, but now!

Second-Order Markov Model

$$P(x_{t+1}|x_1, x_2, \cdots, x_t) = P(x_{t+1}|x_t x_{t-1})$$

Hidden Markov Model 隐马尔科夫模型

The Applications of Markov Model in NLP

- Machine Translation
- Word Segmentation
- Speech Recognition
- Part-of-speech Tagging
- Natural Language Generation

one of the most important statistical computational linguistic models N-gram

Definition of N-gram N元文法

An n-gram model is a type of probabilistic language model for predicting the next item in such a sequence in the form of a (n - 1)-order Markov model.

Ν	N-gram	(N – 1)-order Markov model	Example
1	1-gram(unigram)	Independent from history	One Word
2	2-gram(bigram)	1-order (HMM-1)	Two Words
3	3-gram(trigram)	2-order (HMM-2)	Three Words

Unigram 上下文无关文法

- Only consider the probability of the word itself
- Hypothesis: Every word is independent.

$$P(X) = P(x_1, x_2, \cdots, x_N) = \prod_{i=1}^{N} P(x_i)$$

 $P(x_i) = \frac{Number of x_i in the artical}{Number of all words in the artical}$

The current word is influenced by the previous one word

$$P(X) = P(x_1, x_2, \cdots, x_N) = P(x_1)P(x_2|x_1)P(x_3|x_2) \cdots P(x_N|x_{N-1})$$

= $P(x_1) \prod_{i=2}^{N} P(x_i|x_{i-1})$

 $P(x_i|x_{i-1}) = \frac{Number of (x_{i-1}x_i) in the artical}{Number of all x_{i-1} in the artical}$

The current word is influenced by the previous two words

$$P(X) = P(x_1, x_2, \dots, x_N) = P(x_1)P(x_2|x_1)P(x_3|x_2x_1)P(x_4|x_3x_2) \dots P(x_N|x_{N-1}x_{N-2})$$

= $P(x_1)P(x_2|x_1) \prod_{i=3}^{N} P(x_i|x_{i-1}x_{i-2})$

$$P(x_i|x_{i-1}x_{i-2}) = \frac{Number \ of \ (x_{i-2}x_{i-1}x_i) \ in \ the \ artical}{Number \ of \ all \ (x_{i-2}x_{i-1}) \ in \ the \ artical}$$

Tips

- 1. Previous studies showed that trigram and four-gram often have better performance
- 2. The larger of *N*, the more complex of the computation
- 3. N-gram needs training data set, while it is impossible for a training data set to contain all the matches of a word

Smoothing 平滑

- Zero Probability 零概率
- Small Probability 小概率
- Laplace Smoothing 拉普拉斯平滑

 $P(x_i|x_1, x_2, \cdots, x_{i-1})$ $Number of (x_1 \dots x_i) in the artical + 1$

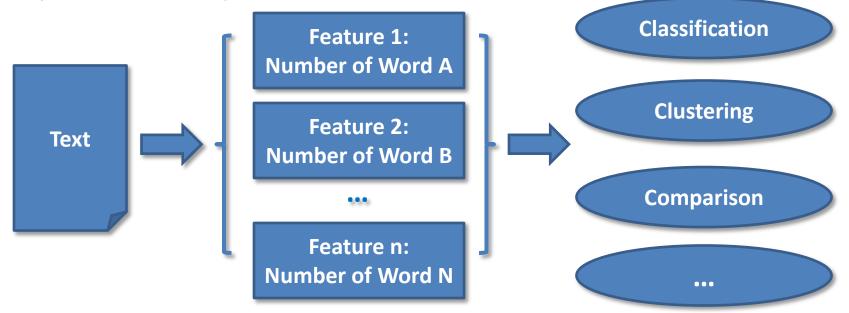
Number of $all(x_1 \dots x_{i-1})$ in the artical + Number of words in dictionary

N-gram

Commonly used Smoothing Approaches

- Linear interpolation (e.g., taking the weighted mean of the unigram, bigram, and trigram)
- Good–Turing discounting
- Witten-Bell discounting
- Lidstone's smoothing
- Katz's back-off model (trigram)
- Kneser–Ney smoothing

Ref. https://en.wikipedia.org/wiki/N-gram



the first step for Chinese information processing Chinese Word Segmentation

Why Word Segmentation?

However, it is difficult to extract words from Chinese text.

Difficulties: Disambiguation

乒乓球拍卖完了 乒乓|球拍|卖完了 乒乓球|拍卖|完了

Forward Max. matching method, FMM 正向最大匹配

准备工作: 需要分词词典D

设MaxLen表示最大词长度

算法:

- 1. 从生语料N中取长度为MaxLen的字串str,令Len= MaxLen
- 2. 把str与D中的词相匹配
- 3. 若匹配成功,则认为str为词,N中去掉str(指针前移Len个单位),返回1
- 4. 若匹配不成功,
- ◆ 若Len>1则Len--,从生语料N中取长度为Len的字串str返回2;
- ◆ 否则,得到单字词, N中去掉str(指针前移1个单位),返回1

若4中得到的单字不是词,则要进行未登录词处理

若待切分的语料字串长度小于MaxLen,则取str为待切分语料

Backward Max. matching method, BMM 逆向最大匹配

- 1. Similar to FMM, but the text is scanned from the right side
- 2. Often jointly use with FMM

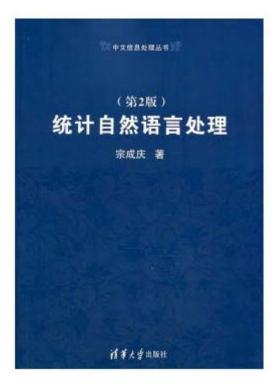

```
    Statistical Matching Method
```

```
FMM and BMM
Begin initialize Path ← {}, AmbiguousString, SubString ← {}
  While (AmbiguousString.Length>0)
     //只考虑以当前HMM第一个状态开始的匹配序列
     SubString←以AmbiguousString中的第一个字为基准,取出所有可能的匹配字符串
     Foreach SubString
        //提供当前情况下所有的概率,为判断歧义作参考
           计算当前每一种可能情况的概率P(SubString) //unigram, bigram, trigram with smoothing
     //选择概率最大的SubString添加到Path
     将argmax(P(SubString))添加到Path
     //准备考察除去最大概率的SubString后的AmbiguousString,从HMM序列首部开始,除去所有的匹配状态
     AmbiguousString. Remove(0, argmax(P(SubString)).Length)
   Return Path
End
```


Reference

Reference

• https://item.jd.com/11701113.html



• https://item.jd.com/1040675628.html

Homework

Homework

- Data Collection for your group.
- Try your best to write a Chinese word segmentation algorithm and run it.
- How work will be presented group by group on Dec. 21 and report should be handed before Jan. 6.

The End of Lecture 9

Thank You

http://www.wangting.ac.cn